产品展示
PRODUCT DISPLAY
产品展示您现在的位置: 首页 > 产品展示 > > 地埋式污水处理设备 >一体化无动力生活污水处理设备

一体化无动力生活污水处理设备

简要描述:

一体化无动力生活污水处理设备传统同步脱氮除磷工艺所存在的不同微生物菌种对碳源竞争的矛盾导致了难以实现对氮磷同步去除, 而反硝化除磷工艺则为解决上述问题提供了新的途径, 并在实现“一碳两用"的同时能够降低污泥产量.

产品时间:2018-10-19

在线咨询 点击收藏

一体化无动力生活污水处理设备

厂家生产各种型号的污水设备,任何型号、任何尺寸、任何价格的设备供客户挑选。

设备确定好后厂家送货上门、免费安装、免费培训、免费售后服务。

地埋式一体化污水处理设备日产5台、出厂价销售,气浮设备日产3台、出厂价销售,沉淀设备日产5台、出厂价销售、二氧化氯发生器日产30台、出厂价销售。

跟我们合作,客户只需做好土建就可以,省心、省力更省钱。

化粪池(septic tank )是世界上最普遍应用的一种分散污水处理技术(初级处理),具有结构简单、管理方便和成本低廉等优点,既可以作为临时性的或简易的排水设施,也可以在现代污水处理系统中用作预处理设施,对卫生防疫、降解污染物、截留污水中的大颗粒物质、防止管道堵塞起着积极的作用。目前在我国,几乎每一个城市建筑物都设有化粪池,安装了水冲厕所的乡村分散家庭一般也设有化粪池。而随着城市集中污水处理厂的普及,国外许多国家逐步取消了化粪池的设置,但是化粪池仍在乡村分散污水治理中发挥重要作用。


作为人类发明的第1种污水处理设施,化粪池在现代排水与污水处理发展史上具有里程碑的意义,为改善人类的生活卫生与居住环境发挥了重要作用。但总体而言,由于被认为技术过于简单、处理性能也很初级,化粪池技术越来越不被学术界所关注。随着现代污水处理技术发展,特别是深度脱氮问题日益突出,化粪池还面临存废问题。本文简单回顾化粪池技术的发展历程,探讨该项技术在当前乡村分散污水治理中的应用方向。
化粪池技术的产生和原理
化粪池的产生
最早的化粪池可以追溯到19世纪的欧洲。1860年,法国研究人员在住宅和集粪坑之间设计了一个“箱”,并且这个“箱”的进水管和出水管均深人水面下以形成水封。1881年,法国《宇宙》杂志报道了这个“箱”,并称之为“MOURAS池”,其以去除大部分固体污物,还可以产生较清澈的液体用于灌溉土地。这便是现代化粪池的先驱,后来也被认为是人工厌氧生物处理技术的开端。1883年,美国的研究人员设计两格式池,并利用自动虹吸管进行间歇出水。随后,化粪池在世界范围内得到了广泛的传播与应用;然而,由于池内产生的气体对底泥的扰动性较大,导致出水中悬浮固体浓度较高,影响其回用于农田,人们开始研究如何有效地分离污水中的液体和固体,因此两格式、三格式化粪池应运而生,并至今仍被广泛应用。1905年,德国研究人员设计了一种双层沉淀池(imhoff tank ),池子内部分别完成沉淀和厌氧消化的过程,这就是目前在小型污水处理厂常见的隐化池。

曝气生物滤池由内锥即下向流对流接触氧化区和外锥即上向流曝气生物过滤区,以及下部导流沉降无泵污泥回流区三部分组成。
在内锥即下向流生物接触氧化过滤区和外锥即上向流曝气生物过滤区内,都设有滤料。在下部的导流沉降分离无泵污泥回流区内装有导流板和无泵污泥回流管。在内锥即下向流对流接触氧化生物过滤区和外锥即上向流曝气生物过滤区,与下部的导流沉降分离无泵污泥自动回流区之间装有滤料,并在滤料下部设有滤池反冲洗空气管和水管。其污水流向为:污水自上而下进入内锥即下向流对流接触氧化生物过滤区内,通过滤料空隙间曲折下行至导流沉降无泵污泥回流区,实现泥水分离,分离出来的污泥在不用泵的条件下,自动回流到污水池的前端,进入厌氧池或水解酸化池反硝化处理。

分离出来的水导入外锥即上向流曝气生物过滤区,并同样通过滤料空隙曲折上升,污水在上升的处理过程中产生的污泥也在重力作用下,自动下沉于导流沉降分离区,通过无泵污泥排泥系统,回流到污水池前端进入厌氧池或水解酸化池反硝化处理。空气的流向为:在内锥即下向流对流接触氧化生物过滤区内,空气是自下而上,在滤料空隙间曲折上升;在外锥即上向流曝气生物过滤区内,空气同样是自下而上,在滤料空隙间曲折上升。

厌氧消化技术目前广泛用于污泥及高浓度有机废水的处理并可回收沼气, 但厌氧消化液中存在高浓度氨氮及硫化物.研究发现, 某些工业废水如制革废水和采矿废水等也会产生高浓度的硫化物及氮素污染物(Guo et al., 2016).硫化物具有臭味和腐蚀性, 会严重影响人体健康及生活环境, 氮素污染物则是水体富营养化的主要诱因, 因此, 这些废水排放前需除硫脱氮.

一体化无动力生活污水处理设备近年来出现的微生物燃料电池(Microbial Fuel Cell, MFC)可在去除污染物的同时回收电能, 在废水脱氮或废水除硫领域具有较好的发展前景(Sun et al., 2016; Zhao et al., 2008).前期的MFC除硫多采用化学阴极, 以高锰酸钾或铁为电子受体(Cai et al., 2015; Lee et al., 2012), 易产生二次污染.以S2-作为阳极电子供体, NO3-为阴极电子受体, 可在单一的反硝化除硫MFC内分别完成阳极除硫与阴极脱氮(魏炎等, 2016), 具有处理含S2-/NH4+废水的潜力.

值得注意的是, 废水中的氮主要以NH4+形式存在, 采用反硝化除硫MFC处理含S2-/NH4+废水之前, 需要先将NH4+氧化为NO3-.主要方法有:在阳极和阴极之间外接硝化反应器产生NO3-(Virdis et al., 2008); 耦合好氧生物阴极MFC和反硝化MFC, 以好氧阴极MFC产生的NO3-为反硝化MFC提供阴极电子受体(Xie et al., 2011); 直接将含NH4+废水充氧, 在MFC阴极进行同步硝化/反硝化(Virdis et al.2010).相比而言, 在MFC阴极进行同步硝化/反硝化时, 氧作为更强的电子受体会抑制反硝化效果, 需谨慎控制阴极曝气量.因此, 如以MFC同时进行阳极除硫与阴极硝化, 可克服化学阴极的缺点, 阴极硝化产生的NO3-还能为将来的反硝化除硫MFC提供阴极电子受体, 降低了氧对阴极反硝化的影响, 但这方面的研究目前还鲜见相关报道.

曝气生化系统的调试流程及操作规程
曝气生化系统主要是在有氧的情况下,废水中的有机物通过活性污泥中的微生物吸附、氧化。

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
联系方式
  • 电话

  • 传真

在线客服