一体化二级生化污水处理设备强化生物除磷(EBPR)是目前应用较为广泛的生物除磷工艺.该工艺利用聚磷菌(PAO)在厌氧条件下将储存于体内的聚磷酸盐(Poly-P)水解获取能量, 用以吸收水中的挥发性脂肪酸(VFA), 并以聚羟基烷酸酯(PHAs)的形式储存在细胞内;
产品时间:2024-09-06
一体化二级生化污水处理设备
买一体化二级生化污水处理设备去哪里?找鲁盛环保公司,专业生产,不用质疑。
公司从事污水处理、设备生产十年以上经验,主要加工的产品:地埋式一体化污水处理设备、气浮设备、沉淀设备、二氧化氯发生器、加药装置等。
公司各方面优势:设备出货快(3个加工车间,日出货5台),设备质量有保障(钢板采用国标、防腐内外三遍、出厂检有专门的检验部门检测)、送货快(专车送货),安装及时(全国外派三十多个安装队伍)、售后方便(公司在外售后团队三十多个,覆盖每个省市),免费的技术培训、免费的现场指导。
跟我们合作的客户遍布大江南北,您还有什么不放心的?
面对环境对水的污染严重,我们对废话的治理也是越来越迫在眉睫了。虽然治理废水的技术方法有很多,但其最基本的作用原理却只有三项:分离、转化和利用。
分离,采用各种技术方法,把废水中的悬浮物或胶体微粒、微滴分离出来,从而使废水得到净化,或者使废水中污染物减少到最低限度。
转化,对于已经溶解在水中,无法"取"出来或者不需要"取"出来的污染物,采用生物化学的的方法、化学和电化学的方法,使水中溶解的污染物转化成无害的物质(如转化成 H2O、 CO2、 CH4、NO3 等),或者转化成容易分离的物质(如沉淀物、附着物、上浮物、不溶性气体等等)。
总之,使水中污染物发生有利于治理的化学、生物化学变化。利用,有些废水(主要是高浓度的废液),未经处理或者稍加处理有可能找到新的用途,可以成为有用的资源,用于再制造、再加工,从而*解决了废水(或其他废物)的治理问题。
治理废水的生物化学方法:厌氧法、好氧法、氧化塘、其他生物治理方法等。治理废水的生物化学方法利用微生物或植物来净化废水的技术,称之为生物化学法。
传统污水处理的脱氮工艺基于微生物作用,在去除有机污染物的同时,通过硝化-反硝化耦合过程将氨氮氧化为硝酸根,再还原为氮气去除。 该工艺过程虽然可以满足污水的脱氮要求,但一方面面临消耗有机碳源、工艺能耗较高、污泥产生量大、停留时间长、构筑物占地面积大、受温度波动限制等缺点,另一方面,其技术原理的本质是氮元素的去除、而非资源化回收利用。 近年来,以污水资源化为核心的新型水处理概念和工艺被不断提出。 MCCARTY 等讨论了城市污水厂作为能源输出的可能。VERSTRAETE等提出了“ zero-wastewater”概念的上游浓缩工艺,通过有机物厌氧消化最大可能实现生活污水中的能源回收。 BATSTONE 等提出“源分离-释放-回收”工艺实现生活污水中 C、N 和 P 的回收。
一种潜在的可持续的“上游浓缩”污水处理思路是用膜将污水中有机物分离浓缩,高 COD 浓缩液进行厌氧消化回收能源,另一端含氨氮的出水利用离子交换过程实现氮素的富集回收。 由于膜组件的预处理可以避免固体悬浮物、有机物等造成的堵塞等问题,因此该资源化处理思路可以最大限度的发挥离子交换柱的吸收能力,实现氮素的回收利用。
前期研究表明,生活污水经过超滤膜浓缩处理后,出水氨氮相对较低、存在杂质离子,是限制氮素回收利用的主要因素。 为了尽可能回收利用污水中蕴含的资源(氮素) ,本研究探索基于离子交换法去除、回收利用生活污水中的氨氮,旨在促进水回用同时实现氨氮的富集回收,通过对离子交换富集回收氨氮方法的经济性进行初步分析,为新的污水处理方式选择提供参考。
沸石和阳离子交换树脂是常见的氨氮吸收剂(考虑到本研究过程同时发生物理吸附和化学离子交换,本文统一使用吸收) 。研究表明,氨氮吸收的影响因素包括 pH、初始浓度、其他阳离子及吸收剂用量等。针对吸收饱和后吸收剂的再生回用,有研究者通过动态吸收柱实验研究氨氮穿透曲线和吸收性能,并探究其解吸特性。相关研究表明,不同解吸液、物料流速等因素会对再生液中氨氮的富集效果产生影响。
UASB反应器颗粒化过程的本质是反应器中存在污泥颗粒的连续选择过程。Hulshoff Pol等人的研究认为:在高选择压条件下,轻的和分散的污泥被洗出而较重的组分保持在反应器中。从而使细小分散的污泥生长最小化,细菌生长主要局限在有限数量由惰性有机和无机载体物质或种泥中存在的小的细菌聚集体组成的生长核心。这些生长核心的粒径增加直至达到颗粒污泥和生物膜部分产生脱落的特定最大尺寸,形成新生长核,如此反复。颗粒化初级阶段出现的丝状颗粒随着时间的增长变得更致密。