运城一体化污水处理设备A2O工艺的运行特点(1) 污水首先进入厌氧段,充分发挥了厌氧菌群对高浓度、较难降解有机物的降解优势,适合混有工业废水的城市污水处理,污泥产量少。(2) 简化了处理流程,增加了处理功能,是较简单的脱氮除磷工艺,减少了水力停留时间。(3) 在厌氧-缺氧-好氧交替运行下,丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀。(4) 剩余污泥中的磷含量一般可达污泥干重
产品时间:2024-09-08
运城一体化污水处理设备
新型污水处理设备、便宜又实惠,适合大众的产品——潍坊鲁盛水处理设备有限公司。
污水设备系列型号:WSZ系列、MBR工艺、AO工艺、A2O工艺、AAAO工艺及MBBR工艺。
水量:日处理1-5000吨,每小时0.1吨-200吨。
运输方式:汽运
安装:公司派技术上门安装。
出货周期:1-3天。
运城一体化污水处理设备现货,可直接采购。
各类型氧化沟特点
卡鲁塞尔(Carroussel)氧化沟
卡鲁塞尔氧化沟是1967年由荷兰的DHV公司开发研制。它是一个由多渠串联组成的氧化沟系统。废水与活性污泥的混合液在氧化沟中不停地流动,在沟的一端设置曝气器,使系统中形成好氧区和缺氧区,使其具有生物脱氮的处理功能。卡鲁塞尔氧化沟的发展经历了普通卡鲁塞尔氧化沟、卡鲁塞尔2000氧化沟和卡鲁塞尔3000氧化沟三个阶段。
在普通卡鲁塞尔氧化沟工艺中,污水经过格栅和沉砂池后,不经过预沉池,直接于回流污泥一起进入氧化沟系统。BOD降解是一个连续过程,硝化和反硝化作用发生在同一池中。
卡鲁塞尔2000氧化沟系统是由美国盐湖城EIMCO公司研制的一种具有内部前置反硝化功能的氧化沟工艺。该工艺运行过程中,借助于安装在反硝化区的螺旋桨将混合液循环至前置前置反硝化区(不需循环泵)。前置反硝化区的容积一般为总容积的10﹪左右。反硝化菌利用污水中的有机物和回流混合液中硝酸盐和亚硝酸盐进行反硝化,由于混合液的大量回流混合,同时利用氧化沟内曝气所获得的两会各硝化效果,该工艺使氧化沟脱氮功能得到加强。聚磷菌的释放磷和过量吸收磷过程又可以实现污水中磷的去除。
卡鲁塞尔3000氧化沟又称深型卡鲁塞尔氧化沟系统,水深可达7.5-8m。该系统是在卡鲁塞尔氧化沟2000系统前再加上一个生物选择区,该生物选择区是利用高有机负荷筛选菌种,抑制丝状菌的增长,提高各误认为的去除率。除了比普通卡鲁塞尔氧化沟深外,其*的圆形缠绕式设计还可降低建设成本和减少污水厂土地占用。
奥贝尔(Orbal)氧化沟
奥贝尔氧化沟工艺是由南非的休斯曼(Huisman)设想开发,后转让给美国的Envirex公司,该公司于1970年开始将它投放市场。奥贝尔氧化沟一般由3条同心园形或椭圆形渠道组成,各渠道之间相通,进水先引入最外的渠道,在其中不断循环的同时,依次进入下一个渠道,相当于一系列*混合反应池串联在一起,最后从中心的渠道排出。曝气设备多采用曝气转盘,转盘的数量取决于渠内的溶解氧量。水深可采用2-3.6m,并保持沟底流速为0.3-0.9m/s。
在三条渠道系统中,从外到内,*渠的容积为总容积的50﹪-55﹪;第二渠为30﹪-35﹪;第三渠为15﹪-20﹪。运行时,应保持*、第二、第三渠的溶解氧分别为0mg/L、1 mg/L、2 mg/L。*渠中可同时进行硝化和反硝化,其中硝化的程度取决于供氧量。由于*条渠道中氧的吸收率通常很高,一次可在该段反应池中提供90﹪的供氧量,仍可把溶解氧的含量保持在0 mg/L的水平上。在以后的几条渠道中,氧的吸收率比较低,因此,尽管反应池中的供养量较低,溶解氧的含量却可以保持较高的水平。
泥量与泥龄
A2O工艺运行中系统污泥浓度和泥龄对脱氮除磷有重要影响,研究表明,当厌氧池、缺氧池、好氧池中的MLSS维持在3000~3800mg˙L,且三个反应器中的MLSS值接近时,系统具有较好的脱氮除磷效果。厌氧池聚磷菌和缺氧池反硝化细菌属于短泥龄微生物,短泥龄有利于除磷和反硝化,一般缺氧池的泥龄为3~5d,好氧池中自养硝化细菌增殖速度慢,世代周期长,要使自养硝化细菌在系统中维持一定的数量,成为优势菌群,好氧段需要20~30d的长泥龄,但同时长泥龄使含磷污泥的排放过少,且在较高的泥龄下聚磷菌为维持生命活动分解聚合磷酸盐,可能使磷从含磷污泥里重新释放出来,不利于系统除磷,一般系统若以除磷为主要目的,泥龄可控制在6~8d,另外,反硝化聚磷菌的发现使系统在缺氧段脱氮的同时也能使磷得到部分去除,研究发现,当系统的SRT在 15d时缺氧段具有较高的脱氮除磷效果。为了兼顾脱氮除磷,建议污泥龄为硝化菌的最小世代期的2倍以上,权衡考虑将污泥龄控制在8~15d较合适。
碳源
脱氮除磷过程中反硝化细菌和聚磷菌是混合共生的,相互竞争碳源,且反硝化细菌会优先摄取碳源,厌氧段碳源不足会抑制聚磷菌的释磷,从而导致最终除磷效果变差,为了保证良好的除磷效果,厌氧段需要有充足的可供聚磷菌吸收的碳源,一般将厌氧池( SP/SBOD) 控制在0.06以内,污泥负荷控0.10kgBOD5 /( kgMLSS˙d) 以上。缺氧池内异养型兼性厌氧反硝化细菌需要足够的有机物作为电子供体,以NO-x-N为电子受体,将回流混合液中的NO-x-N还原成 N2,完成系统的脱氮,因此缺氧池需要一定的C/N,根据工程实践经验,当COD/TKN大于8时,脱氮率可达80% 。
好氧池碳源不宜过多,过多的碳源会促使好氧池内异养型好氧细菌成为优势菌群,抑制自养型硝化细菌的硝化作用,对系统脱氮产生负面影响,好氧池应将污泥负荷控制在0.15kgBOD5/( kgMLSS˙d)以下。系统运行过程中应定期核算污水进水水质是否满足BOD5/TKN大于4,BOD5/TP大于20的要求,否则需要补充碳源。在碳源分配上,厌氧池、缺氧池、好氧池呈递减趋势,厌氧池需要过多的碳源,缺氧池碳源充足,好氧池碳源较低。
NH+4-N浓度
好氧段过高的NH+4-N浓度会对硝化菌产生抑制作用,要保证NH+4-N正常硝化,通常TKN/MLSS负荷率应小于0.05kgTKN/( kgMLSS˙d)
氧化沟工艺是20世纪50年代由荷兰卫生工程研究所(TNO)的帕斯维尔(A.Pasveer)博士通过研究和设计首先开发的。*座氧化沟污水处理厂是帕斯维尔于1954年在荷兰的伏肖汀(Voorshoten)建造的,服务人口仅为360人。它将曝气、沉淀和污泥稳定等处理过程集于一体,间歇运行,BOD5去除率高达97﹪,管理十分方便,运行效果稳定,适用于中小村镇的污水处理。这种类型的氧化沟因其设计者而被命名为“帕斯维尔沟”。60年代起,这项技术在欧洲、大洋洲、北美和南非等各国得到了迅速推广和应用,工艺上和构造上也有了很大的发展和改进。据不*统计,目前英国业已兴建了300多座氧化沟污水处理厂,美国已有500多座这样的污水处理厂。氧化沟的处理能力为500万-1000万人口当量,既能用于生活污水处理,也能用于城市污水和工业废水的处理。
氧化沟的特点
氧化沟的工艺特点
(1)简化了预处理 氧化沟水力停留时间和污泥龄比一般生物处理法厂,悬浮有机物可与溶解性有机物同时得到较*的去除,排出的剩余污泥已得到高度稳定,因此氧化沟可不设初沉池,污泥不需要进行厌氧消化。
(2)占地面积少 因为在流程中省略了初沉池、污泥消化池,有时还省略了二沉池和污泥回流装置,使污水厂总占地面积不仅没有增大,相反还可缩小。
(3)具有推流式流态的特征 氧化沟具有推流特性,使得溶解氧浓度在沿池长方向形成浓度梯度,形成好氧、缺氧和厌氧条件。通过对系统合理的设计与控制,可以取得较好的脱氮除磷效果。
(4)简化了工艺 将氧化沟和二沉池合建为一体式氧化沟,以及近年来发展的交替工作的氧化沟,可不用二沉池,从而使处理流程更为简化。