80t/d地埋式一体化生活污水处理设备MBFB膜生物流化床工艺用于污水深度处理,能在原有污水达标排放的基础上,经过生物流化床和陶瓷膜分离系统,进一步降低COD、NH-N、浊度等指标,可作为RO脱盐处理的预处理工艺,替代原有砂滤、保安过滤、超滤等冗长过滤流程,同时有机物含量的降低大大提高RO膜使用寿命,降低回用水处理成本,无机陶瓷膜分离系统,是套污水处理的无机膜分离系统,和其它的有机膜、无机膜相
产品时间:2024-09-09
80t/d地埋式一体化生活污水处理设备
新型产品,实力厂家。
鲁盛水处理设备有限公司专业生产80t/d地埋式一体化生活污水处理设备。
质量有保障、价格更优惠,是您合适的选择。
我们可以为您报价、出方案、出施工图纸、做技术指导、技术培训、设备维修维护等解决各方面的问题。
地下式污水处理厂工艺
地下式污水处理厂多采用主体构筑物组团布局共壁合建的箱体式构筑物,工艺多采用高效理单元技术组合、生物处理的核心段多采用改良A2/o、MBBR、MBR、BAF;深度处理依据去除对象的不同多采用深床过滤、活性砂过滤,高效沉淀、磁混凝沉淀,纤维过滤、滤布滤池、超滤等占地少、效率高的工艺。根据地下式污水处理厂特点配备,高标准除臭工艺、通风及消防、地下高效采光、应急安全设施等*技术,使整体工艺在适应污水处理厂地下模式的同时,实现高出水标准及绿色节能。
在生物处理核心段,采用改良A2/o工艺较多,该工艺目前在国内的运用已经十分成熟、可靠程度高,A2/o方案流程较长,但运行成本较低。MBBR工艺通过控制流动填料在生物反应池内的比例,可以形成活性污泥与生物膜法的共生系统,也可以形成以生物膜法为主要处理功能的生物膜系统,该工艺更适合作为地下式污水处理厂升级改造、改善出水水质的情况。
鉴于目前改善水环境和污水资源化的需要,如北京、合肥、天津、呼和浩特等多座城市均提出了更严格的出水标准,该工艺良好的弹性可为以后水质再提高奠定基础。MBR工艺生物池污泥浓度高,所需生物池体积小,深度处理多半仅需要消毒处理即可,在以上几种工艺中节省占地,但是MBR附属设备偏多,运行操作要求高且膜清洗需耗费较多的人力物力,膜更换费用较高。深度度处理部分需要对出水的氨氮、总氮进一步把关时,可选择兼具除氮、SS功能的深床滤池、活性砂滤池;以除磷、SS为目的可以选择高效沉淀、磁混凝沉淀,纤维过滤、滤布滤池、超滤等处理单元或单元组合。
平面布置与竖向上的考虑;地下式污水处理厂集中在有限的地下箱体内,要统筹协调好工艺、各种管线、通风除臭、消防、交通、运营维护各方面的关系,保证有机衔接,实现集约化的集成,从而有效节约空间减小地下箱体体积,达到节省投资的目的。
工艺选择上,宜选择高效处理单元组合,平面上满足功能分区,便于安排除臭、管线综合,供电、风机、加药、消毒、污泥脱水与工艺之间的有机衔接。尤其要注意构筑物内的电气、除臭、地下空间通风、消防、事故排水安全等设计。景观设计是地下式污水处理厂的亮点,要结合地下箱体顶部的承重能力合理配置景观、灌木、树木等。活性生物悬浮填料(流化床填料)是一种新型生物活性载体,它采用科学配方,根据不同水质需求,在高分子材料中融合不同种类有利于微生物快速成附着生长的微量元素,经过特殊工艺改性、构造而成,具有比表面积大、亲水性好、流动性好、生物活性高、易挂膜、处理效果好、使用寿命长等优点。
一、主要特点:
特殊配方及加工,加速填料挂膜;
有效比表面积大,生物附着量多;
依靠生物膜处理,可省污泥回流;
高效脱碳除氨氮,提高出水水质;
低能耗节省占地,缩短工艺流程。
二、 产品技术核心
1、按流体力学设计几何构型、强化表面附着能力
2、填料比表面积大、附着生物量多
3、无需支架、易流化、节省能耗
4、节省占地,通过增加填充率提升处理能力及效果,无需新增构筑物
有机物的来源、危害与生物稳定性的提出
从来源来看,水源水中的有机物的来源可分为两大类。一类为天然有机物,是自然环境的代谢产物,包括腐殖质、微生物分泌物、溶解的植物组织及动物的废弃物等。另一类是人工合成有机物,包括农药、工业废弃物等。
研究结果显示,饮用水中有机物具有众多的危害作用:(1)部分有机物为高毒性的持久性有机污染物或内分泌干扰物质,具有致癌性、生殖毒性、性等危害,对人体健康有直接的威胁;(2)部分有机物为消毒副产物的前体物质,在加氯消毒过程中可形成具有毒性的卤代有机化合物,进而危害人体健康;(3)饮用水中的可生物降解有机物将对给水管网和管网水质产生危害。这其中的第三类危害已成为近年来的关注热点。
由于管网系统微生物再生长而导致的水生疾病占43%,我国对供水量占全国42.44%的36个城市调查结果表明:出厂水中细菌总数仅为6.6个/L,而在管网水中已上升到29.2个/L。
常规净水工艺中,一般采用加氯消毒并保持管网内一定的余氛含量来控制细菌生长,但现有研究表明部分细菌或大肠杆菌在经过氯消毒过程后,能在管网中修复、重新生长;并且当出厂水中营养物质浓度足够高时,即使加大投氯量,也很难抑制细菌的生长。大量针对给水管网内生物膜的生长、管网水细菌再生长和大肠杆菌爆发的研究表明:出厂水中存在可生物降解有机物(BOM)是管网中异养细菌重新生长的主要原因,并为此提出了饮用水生物稳定性的概念。
生物稳定性的概念、指标与给水管网中的细菌生长机制
(一)概念与指标
饮用水生物稳定性是指饮用水中可生物降解有机物支持异养细菌生长的潜力,即当有机物成为异养细菌生长的限制因素时,水中有机营养基质支持细菌生长的大可能性。当前,一般采用可同化有机碳(AOC)和生物可降解溶解性有机碳(BDOC)作为饮用水生物稳定性的主要评价指标。越来越多的研究与试验证明,AOC和BDOC作为衡量饮用水中可生物降解有机物含量的指标与饮用水管网中细菌生长有着密切的关系。只有控制出厂水中的AOC与BDOC的含量达到一定的限值,才能有效的防止管网中细菌的再生长。
(二)生物稳定性与给水管网中的细菌生长机制
研究表明,饮用水生物稳定性高,则表明水中细菌生长所需的有机营养物含量低,细菌不易在其中生长;反之,饮用水生物稳定性低,则表明水中细菌生长所需的有机营养物含量高,细菌容易在其中生长。自来水及其管网中细菌的生长(再生长)按其来源看,可分为三类:其一,出厂水中含有较多的细菌进入管网而引起自来水中细菌的增加;其二, 管网中细菌的生长繁殖引起的自来水中细菌的增加;后,管网中外源细菌的进入。而在出厂水正常消毒与管网状况良好的情况下,第2点是引起自来水及其管网中细菌生长的主要途径。
一般认为有机基质的含量是影响其生长的主要因素,因此减少水中可生物降解有机物的含量将对控制异养细菌的生长起到决定性的作用。
基本原理
(1)改良A/O分段进水同步脱氮除磷工艺,实现同 步脱氮除磷且具备分段进水本身的优点。系统*段缺 氧区之前增设厌氧区,将回流污泥回流到缺氧区首端,而 在缺氧区末增加内回流设施,将反硝化之后的污泥回流 到厌氧区,保证厌氧区污泥浓度并降低硝酸盐氮对厌氧释 磷的影响。*段进水Q1进入厌氧区,为厌氧释磷提供充 足的有机基质,聚磷菌将有机底物以PHA的形式储存在体 内,当缺氧区D1有足够的电子受体硝酸盐时,聚磷菌储存 的PHA可直接作为缺氧吸磷的动力,实现反硝化除磷。第 一段缺氧区出水进入好氧区进行硝化反应,将氨氮转化 为硝酸盐氮,同时聚磷菌还可利用体内剩余的PHA继续 吸磷。硝化后的污水再进入第二段、第三段的缺氧、好氧 区依次进行反应。
(2)人工生态浮岛技术。人工浮岛是一种长有水 生植物或陆生植物、可为野生生物提供生态环境的漂浮 岛,主要由浮岛基质、植物和固定系统组成。在水体中 设置人工浮岛,浮岛上的植物根系能够吸附和吸收水中 的氮、磷等贮存在植物细胞中。此外,植物根系拥有巨 大的表面积,是水中微生物生长的载体,通过微生物的 共同作用可降低水体化学需氧量(COD)、总氮(TN)、 总磷(TP)及重金属含量。