运城一体化污水处理设备公司对于生物反应器,进水方式会影响反应过程中的反应速度和终的处理效果,进水方式不同还直接影响污泥的沉降性能。采用脉冲布水方式,能够提高进水流速,在一定程度上冲刷填料上的老化生物膜,促进填料间相互摩擦,从而保持生物膜的活性 ;并且脉冲进水方式能够强化传质作用,加速有机物从污水中向微生物细胞的传递,处理效果稳定。
产品时间:2019-04-04
运城一体化污水处理设备公司
一体化污水处理设备可处理水量:5t/d、10t/d、15t/d、20t/d、25t/d、30t/d、35t/d、40t/d、50t/d、60t/d、70t/d、80t/d、90t/d、100t/d、120t/d、150t/d、200t/d、250t/d、300t/d、400t/d、500t/d。
处理污水的种类也广泛:生活污水、医疗污水、布草洗涤污水、洗餐具污水、餐饮污水、屠宰污水、喷漆污水、养殖污水、食品加工污水、洗塑料瓶污水、中药污水及工业污水等。
生物反应对环境条件敏感,容易受温度变化影响。绝大多数微生物正常生长温度为20~35℃,低温会影响微生物细胞内酶的活性,在一定温度范围内,温度每降低10℃,微生物活性将降低1倍,从而降低了对污水的处理效果。工艺投入运行后,由于四季的交替和所处的地理位置影响,若不加以人工调控,温度很难保持适宜。而温度调控则会耗费大量的能源。解决这一难题的途径就是开发高效稳定的低温生物处理工艺。
近年来国内外已有一些研究涉及低温废水生物脱氮技术,提出了一些新方法。笔者将探讨低温对脱氮工艺的影响,比较低温脱氮工艺的运行策略,并据此指出低温脱氮工艺的研发方向。
低温对脱氮工艺的影响
温度是影响细菌生长和代谢的重要环境条件。绝大多数微生物正常生长温度为20~35℃。温度主要是通过影响微生物细胞内某些酶的活性而影响微生物的生长和代谢速率,进而影响污泥产率、污染物的去除效率和速率;温度还会影响污染物降解途径、中间产物的形成以及各种物质在溶液中的溶解度,以及有可能影响到产气量和成分等。
低温减弱了微生物体内细胞质的流动性,进而影响了物质传输等代谢过程,并且普遍认为低温将会导致活性污泥的吸附性能和沉降性能下降,以及使微生物群落发生变化。低温对微生物活性的抑制,不同于高温带来的毁灭性影响,其抑制作用通常是可恢复的。
硝化工艺
生物硝化反应可以在4~45℃的温度范围内进行。氨氧化细菌(AOB)生长温度为25~30℃,亚硝酸氧化细菌(NOB)的生长温度为25~30℃。温度不但影响硝化菌的生长,而且影响硝化菌的活性。有研究表明,硝化细菌适宜的生长温度为25~30℃,当温度小于15℃时硝化速率明显下降,硝化细菌的活性也大幅度降低,当温度低于5℃时,硝化细菌的生命活动几乎停止。
运城一体化污水处理设备公司大量的研究表明,硝化作用会受到温度的严重影响,尤其是温度冲击的影响更加明显。由于冬季气温较低而未能实现硝化工艺稳定运行的案例较为常见。U.Sudarno等考察了温度变化对硝化作用的影响,结果表明,温度从12.5℃升至40℃,氨氧化速率增加,但当温度下降至6℃时,硝化菌活性很低。
随着脱氮工艺的不断发展,人们对硝化工艺提出了更高的要求,希望将硝化作用的反应产物控制在亚硝酸盐阶段,作为反硝化或者厌氧氨氧化的前处理技术,可以节约曝气能耗和添加碱量。通过对两类硝化细菌(AOB、NOB)的更多认识,出现了短程硝化工艺。
该工艺的核心是选择性地富集AOB,先抑制再限制后冲洗出NOB,使得AOB具有较高的数量而淘汰NOB,从而维持稳定的亚硝酸盐积累。短程硝化过程通常由控制温度、溶解氧、pH来实现。温度控制短程硝化的基础在于两类硝化细菌对温度的敏感性不同,25℃以上时,AOB的大比生长速率大于NOB的大比生长速率。
据此提出了世界上*个工业化应用的短程硝化工艺——SHARON工艺(温度设置为30~40℃)。因此,在低温下实现短程硝化颇具挑战。
反硝化工艺
低温对于反硝化有显著的抑制作用,JichengZhong等研究了太湖沉积物中的反硝化作用,经过数月的实验分析发现反硝化速率呈现季节性变化。U.Welander等考察了低温条件下(3~20℃)反硝化工艺的运行性能,研究表明在3℃下反应器的反硝化速率仅为15℃下的55%。相对于传统的缺氧反硝化,温度对好氧反硝化的脱氮效率影响不显著,王弘宇等筛选出的一株好氧反硝化菌,在25~35℃下都能达到大于78%的脱氮效率。表1概括了不同温度下的反硝化速率。
厌氧氨氧化工艺
有学者的研究表明,能够进行厌氧氨氧化反应的温度范围为6~43℃,温度为28~40℃。在废水生物处理中,活化能的取值范围通常为8.37~83.68kJ/mol,而厌氧氨氧化的活化能为70kJ/mol。因此,厌氧氨氧化属于对温度变化比较敏感的反应类型,温度的降低对其抑制作用明显。生物接触氧化法是以附着在载体(俗称填料)上的生物膜为主,以悬浮微生物为辅,净化废水的一种高效水处理工艺。具有活性污泥法特点的生物膜法,兼有活性污泥法和生物膜法的优点。厌氧接触氧化技术是利用附着在填料或载体上生长、繁殖的细菌、原生动物和后生动物等微生物形成的厌氧生物膜和悬浮微生物处理废水的技术。与传统的活性污泥法相比 ,以生物膜为主的厌氧接触氧化反应器有更高的生物质密度和生化反应速率,对有毒有害物质具有较强的耐受性,在较大的剪切力、水利冲击等不利条件下仍运行稳定。李晓艳等采用分散式小区污水处理装置并结合厌氧优势菌,处理天津市某小区的生活污水。整个装置埋于地下,不占地表面积,运行管理简单。经厌氧生物膜处理单元,COD 去除率约60% 左右,氨氮去除率约为45% ,浊度由进水的34 ~ 87 NTU 降到10 NTU 以下,去除效果明显。
对于生物反应器,进水方式会影响反应过程中的反应速度和终的处理效果,进水方式不同还直接影响污泥的沉降性能。采用脉冲布水方式,能够提高进水流速,在一定程度上冲刷填料上的老化生物膜,促进填料间相互摩擦,从而保持生物膜的活性 ;并且脉冲进水方式能够强化传质作用,加速有机物从污水中向微生物细胞的传递,处理效果稳定。苏玉民等研究表明上流式厌氧污泥床反应器的间歇式脉冲配水系统较传统的连续式配水系统*。脉冲配水迅速,均匀,没有死区,并能提供柔和的水力搅拌,促进生物体与基质之间的有效接触,提高了反应器的有机负荷,缩短了污泥颗粒化过程。