产品展示
PRODUCT DISPLAY
产品展示您现在的位置: 首页 > 产品展示 > > 一体化污水处理设备 >A2O生活污水处理设备

A2O生活污水处理设备

简要描述:

A2O生活污水处理设备厌氧池是指没有溶解氧,也没有硝酸盐的反应池。缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。工艺简单,易控制操作,可去除部分COD。目的提高可生化性;
厌氧池---水解、酸化、产乙酸、甲烷化同步进行。需要调节pH,不易操作控制,去除大部分COD。目的是去除COD。

产品时间:2019-02-12

在线咨询 点击收藏

A2O生活污水处理设备

鲁盛水处理设备有限公司主打产品A2O生活污水处理设备

公司常年生产:地埋式一体化污水处理设备、气浮机、二氧化氯发生器、口腔牙科污水处理设备、臭氧发生器、紫外线消毒设备、斜管沉淀设备、UASB厌氧设备、压滤机等,型号相当齐全。

公司面向全国销售,保证送货上门、安装,公司还为客户提供技术支持、人员培训、画图纸、出技术方案等各种服务。

买设备货比三家,注重质量,注重售后服务,注重出水水质。

 水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。一般不选用微孔曝气器作为池底的曝气器。


好氧池就是通过曝气等措施维持水中溶解氧含量在4mg/l左右,适宜好氧微生物生长繁殖,从而处理水中污染物质的构筑物;
厌氧池就是不做曝气,污染物浓度高,因为分解消耗溶解氧使得水体内几乎无溶解氧,适宜厌氧微生物活动从而处理水中污染物的构筑物;
缺氧池是曝气不足或者无曝气但污染物含量较低,适宜好氧和兼氧微生物生活的构筑物。
不同的氧环境有不同的微生物群,微生物也会在环境改变的时候改变行为,从而达到去除不同的污染物质的目的。
好氧池的作用是让活性污泥进行有氧呼吸,进一步把有机物分解成无机物。去除污染物的功能。运行好是要控制好含氧量及微生物的其他各需条件的,这样才能是微生物具有大效益的进行有氧呼吸。
厌氧处理是利用厌氧菌的作用,去除废水中的有机物,通常需要时间较长。厌氧过程可分为水解阶段、酸化阶段和甲烷化阶段。
水解酸化的产物主要是小分子有机物,使废水中溶解性有机物显著提高,而微生物对有机物的摄取只有溶解性的小分子物质才可直接进入细胞内,而不溶性大分子物质首先要通过胞外酶的分解才得以进入微生物体内代谢。例如天然胶联剂(主要为淀粉类),首先被转化为多糖,再水解为单糖。纤维素被纤维素酶水解成纤维二糖与葡萄糖。半纤维素被聚木糖酶等水解成低聚糖和单糖。


水解过程较缓慢,同时受多种因素的影响,是厌氧降解的限速阶段。在酸化这一阶段,上述*阶段形成的小分子化合物在发酵细菌即酸化菌的细胞内转化为更简单的化合物并分泌到细菌体外,主要包括挥发性有机酸(VFA)、乳醇、醇类等,接着进一步转化为乙酸、氢气、碳酸等。酸化过程是由大量发酵细菌和产乙酸菌完成的,他们绝大多数是严格厌氧菌,可分解糖、氨基酸和有机酸。

生物选择器的作用机理与分类
生物选择器的定义
为了促进快速生长菌(非丝状菌)的生长,抑制慢速生长菌(丝状菌)的生长而在曝气池的入口处设置的旨在维持较高的底物浓度的一段区域。
动力学选择作用
微生物生长的符合Monod方程:
Chudoba[1-3]的研究结果表明,大多数的丝状菌的KS和值比絮体形成菌低。按照Monod方程,具有较低的KS和 值的微生物当曝气池内基质浓度较低时具有较高的生长速率并占优势,而在高基质浓度条件下则正好相反,在选择器中底物浓度较高,所以絮体形成菌具有较高的生长速率,进入主曝气区后,底物浓度较低,丝状菌生长占优势,从而在整个系统内将丝状菌和絮体形成菌保持在一个合理的比例,从而起到控制污泥膨胀的作用。

吸收作用
在介绍吸收作用之前需澄清一个概念:吸附作用(adsorption)和吸收作用(absorption)。吸附作用是指污水和污泥接触的初期,污水中颗粒状和胶体状的非溶解态的有机物被活性较强的污泥吸附在表面,从而使混合液中的BOD迅速下降,在胞外水解酶的作用下,吸附在污泥颗粒表面的非溶解的有机物被水解成可溶性小分子,回到混合液中,从而水中的BOD又开始上升,即存在释放现象。而吸收作用是指混合液中溶解性小分子有机物穿过细胞膜进入细胞内,以前人们认为这个作用对水中的BOD的去除不会很快,但近的研究表明,菌胶团细菌在负荷为150mgCOD/gVSS 的情况下,初的30min之内,混合液中可降解的溶解性COD的去除率能达到65%以上,一般认为由吸收作用引起的初期去除不会存在释放现象。笔者的实验也证实了这一点。
一般认为絮体形成菌比丝状菌对底物具有较高的吸收能力,在选择器内高底物浓度条件下,絮体形成菌吸收了较多的有机物贮存在体内,进入主曝气区后利用这部分有机物继续生长,使絮体形成菌占优势,从而控制污泥膨胀。
根据在生物选择器内曝气与否,一般将生物选择器分为好氧、缺氧和厌氧生物选择器。
设计方法

生物选择器的设计要确定以下几个参数:选择器的容积、污泥回流量、选择器的布置。其设计也有几种不同的方法,这里介绍一种较易应用的设计方法—絮体负荷设计法。
膜分离技术是物理形式上的物相分离,主要利用膜的选择分离特性滤除水体中的杂质。根据膜孔径从大到小的排列,膜过滤一般可分为微滤、超滤、纳滤和反渗透4种。
微滤、超滤技术具有共同的优势,即处理过程中无副产物、易于自动化控制、pH适用范围广、能有效去除病毒、细菌、寄生虫以及减少消毒剂用量等,在市政给水领域已经受到了普遍的关注和应用,在与其他合适的工艺有机组合后,微滤、超滤膜在市政给水处理中也适用于微污染水源的净化处理,且出水水质优异。除此以外,经微滤尤其超滤膜处理后,饮用水的微生物安全大为提高。
纳滤技术除了具有上述微滤、超滤膜的优点外,还对消毒副产物前体物有很好的去除效果,可减少消毒副产物的形成。纳滤相对微滤和超滤具有一定的去除原水中BDOC的能力,可进一步提高饮用水的化学安全性。然而纳滤膜产水率相对较低,工作压力较微滤和超滤较大,在市政给水领域的应用还会受到经济合理性的约束。
反渗透膜则因为更精细的孔径,水中许多物质(包括离子)都无法通过反渗透膜,可制取近乎纯水。但反渗透膜普遍适用于海水和苦咸水脱盐及降低硬度、受重金属和核素污染水源的处理以及有特殊水质要求的工业水处理领域,对市政给水领域缺乏普遍应用的经济性。
因此,结合市政给水领域的实际特点,综合考虑处理能力、工程造价和运行经济合理性等因素,普遍认为微滤膜、超滤膜是比较适用于市政给水领域的膜处理技术。

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
联系方式
  • 电话

  • 传真

在线客服