产品展示
PRODUCT DISPLAY
产品展示您现在的位置: 首页 > 产品展示 > > 一体化污水处理设备 >WSZ-AO-1.5m3/h一体化生活污水处理装置

WSZ-AO-1.5m3/h一体化生活污水处理装置

产品时间:2019-03-09

简要描述:

WSZ-AO-1.5m3/h一体化生活污水处理装置工艺特点与传统的生物处理技术相比,MBR优势明显: (1)设备紧凑,占地少;生物反应器内将污泥浓度提高了2~5倍,容积负荷可大大提高。(2)出水水质好,可直接回用。(3)生物处理单元中污泥浓度高、泥龄长,对有机物的去除率高。(4)对于氮、磷污染物有较高的去除率(5)操作简便可自控,易于实现自动控制运行、无需专业人员操作、管理简单等优点。

在线咨询 点击收藏

WSZ-AO-1.5m3/h一体化生活污水处理装置

WSZ-AO-1.5m3/h一体化生活污水处理装置报价、采购找我们专业厂家。

与传统生物脱氮除磷相比,反硝化除磷缓解了反硝化过程和生物除磷过程对有机碳源需求的矛盾,以及硝化菌和聚磷菌(PAOs)所需的污泥龄相抵触等矛盾。有学者研究表明:反硝化除磷过程与传统脱氮除磷相比,可以降低30%的氧气消耗量,减少约50%的污泥产量,因此反硝化除磷工艺被视为一种可持续污水处理工艺。陈永志等研究证明通过控制A2/O工艺参数,可使A2/O工艺具有一定的反硝化除磷性能。张志超等也研究证明,在复合式膜生物反应器(MBR)工艺中也存在反硝化除磷现象。
膜生物反应器技术具有微生物浓度高、抗冲击负荷能力强、出水可回用等独特优势,其与A2/O等传统工艺的结合,已被证明是处理城市生活污水的有效手段之一。A2/O - MBR工艺结合了A2/O工艺和膜分离技术各自的优点,很好地解决了传统活性污泥法同步脱氮除磷时两者所需污泥龄不同的矛盾,进一步拓展了MBR的应用范畴。


在A2/O工艺与MBR工艺相结合的基础上,为了避免膜池硝化回流液中过多的溶解氧对缺氧池和厌氧池的冲击,采取了对膜池硝化回流液进行固液分离的措施,将浓缩沉淀后回流污泥送到厌氧段,含有较高浓度硝酸盐的上清液送到缺氧段。 生物预处理技术
生物预处理是指在常规的净水工艺之前增设生物处理工艺,借助于微生物群体的新陈代谢活动,对水中的有机污染物、氨氮、亚硝酸盐及铁、锰等无机污染物进行初步去除,这样既改善了水的混凝沉淀性能,也减轻了常规处理和后续处理过程的负荷。另外,通过可生物降解的有机物的去除,不仅减少了水中“三致”物前体物的含量,也减少了细菌在配水管网中重新滋生的可能性。用生物预处理代替常规的预氯化工艺,不仅起到了预氯化作用相同的效果,而且避免了由预氯化引起的卤代有机物的生成,这对降低水的致突变活性,控制三卤甲烷物质的生成是十分有利的。
 曝气生物滤池(BAF)预处理技术
曝气生物滤池(BAF)预处理技术在饮用水处理中具有以下特点:
⑴水处理过程中的物理、化学和生物化学性质存在较大差异,并且与其去除性存在一定的关系。从分子量上来说,生物可降解有机物主要是低分子量的有机物(分子量<1500)。

常规的给水处理工艺,即混凝、沉淀和过滤,主要是去除分子量>10000以上的有机物,对低分子量有机物去除率低,特别是对分子量<500的有机物,几乎没有去除能力,甚至有所增加。而这部分有机物可能是行成消毒副产物卤乙酸的主要前体,也是饮用水管网中细菌生长的主要营养基质,而生物预处理能有效去除这部分有机物,对提高整个给水处理工艺对有机物的去除效果有重要意义。
⑵对低浓度有机物有较好的去除效果。在BAF中,微生物利用水中营养基质进行生长繁殖,在载体表面形成薄层结构的微生物聚合体,产生生物膜,有利于世代期较长的微生物生长。饮用水中微量污染物浓度(mg/L数量级)有利于贫营养微生物的繁殖,如土壤杆菌、假单胞菌、嗜水气单胞菌、黄杆菌、芽孢杆菌和纤毛菌等。这些贫营养微生物具有较大的比表面积,对可利用基质有较大的亲合力,且呼吸速率低,有较小的最大比增殖速度和Monod饱和常数(Ks)(约为1-10μg/L左右),所以在天然水体条件下,其对营养物的竞争具有较大的优势。Namkung和Rittmann的研究指出,几种微量基质生物降解的同时进行,与同样浓度的单个基质生物降解相比,能导致更多的生物量积累和有更快的去除速率,这表明多种微量污染物的混合,可增加生物膜系统处理效果的稳定性,而受污染水源水中往往含有多种微量有机物。另外贫营养菌通过二级基质的利用能去除浓度极低的微量污染物,例如:贫营养菌在分解利用浓度为1.1mg/L的富里酸时,对浓度为100μg/L得酚和萘的去除率分别为90%-92%,对土臭素和2-MIB(2-甲基异莰醇)的去除率分别为55%和44%,这表明利用水中天然有机物形成的生物膜处理系统可较好的去除微量污染物、嗅味及色度物质。
⑶能去除氨氮、铁、锰等污染物。BAF中,生物膜固定生长的特点使生物具有较长的停留时间,一些生长较慢的微生物如硝化菌等自养菌可在反应器内不断积累。反应器内载体应具有足够的溶解氧,这样就能促进生物膜上好氧硝化菌的生长和代谢活动。对硝化反应动力学的分析表明,即使在低温下,生物膜去除氨氮的作用也是十分有效的。

提高厌氧反应器负荷潜力在于:①污水性质,②系统可保持的单位容积厌氧污泥量,③厌氧污泥与污水的混合程度。
在过去的十年里,若干研究者潜心于修正UASB系统特征参数已提高UASB负荷和UASB对各类污水( 工业 废水)的应用能力。对于各类污水,由于系统内传质阻力和浓度梯度 问题 ,传统的UASB的应用参数表现出严格的限制。例如对于低浓度和低温污水,沼气产率下降。同时混合程度从流体动力学角度证明了质量传递在微生物降解有机物中的重要作用。进一步地,浓度梯度的出现限制了富含蛋白质和长链脂肪酸的污水处理以及生物可降解的有毒化合物如甲醛。对于有毒化合物只能在污水被有效稀释下、反应器内部混合状况好的情况下采用高负荷厌氧反应器处理。

厌氧流化床(AFB)反应器在原理上克服了污染物传质速率限制,但由于生物膜流失和惰性支撑材料破碎问题,流化床系统难于有效管理。并且为了混合液完全流化,厌氧流化床的能量要求较高。

留言框

  • 产品:

  • 留言内容:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 详细地址:

  • 省份:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
联系方式
  • 电话

  • 传真

在线客服