产品展示
PRODUCT DISPLAY
产品展示您现在的位置: 首页 > 产品展示 > > 微动力污水处理设备 >40t/d地埋式一体化生活污水处理设备

40t/d地埋式一体化生活污水处理设备

简要描述:

40t/d地埋式一体化生活污水处理设备MBBR技术的抗冲性较强,性能稳定,运行结果可靠性高。由于比表面积大,吸附性强,污水处理池得到充分的利用,基本可以做到360度*运转。据MBBR生物膜的生物活性和水利特征研究结果表示,MBBR移动床生物膜反应器在长深比为0.5左右的时候,填料在反应器内自由均匀移动的可能性高,进而能充分混合,填料堆积的现象比较少。

产品时间:2019-01-16

在线咨询 点击收藏

40t/d地埋式一体化生活污水处理设备

我公司专业生产40t/d地埋式一体化生活污水处理设备

*。

工艺采用AO及MBR先进工艺。

可用于处理生活污水、医疗污水等多种水质。

排放可达到一级、二级排放标准。

设备可放地上、地下。

 阿科曼生态基是一种用于生态性水处理的高科技材料,由美国梅瑞地安水生科技公司(Meridian Aquatic Technology,L.L.C) *科学家Roderick J.McNeil 博士发明,并于1995年推广应用于世界各地的水生态环境修复和水污染防治领域,目前阿科曼生态基已经得到越来越广泛的应用。
1、 结构形式
阿科曼生态基的结构形式有两种:SDF(表面安置型)和BDF(底部放置型)。
SDF(表面安置型)型生态基上部结构较为疏松,下部较为密实,上部的超级编织层——疏松的纤维编织结构可以程度地实现颗粒物的沉降和利于藻类生长繁殖、促进物种多样化。下部的超级编织层———密实的纤维编织结构可以由外及里形成理想的“好氧-兼性-厌氧”环境,实现高效的脱氮除磷、降解有机物,生物膜能自然脱落。
BDF(底部放置型)型生态基一面编织较密实,另一面编织较疏松。疏松设计有利于藻类的生长,密实的设计有利于细菌(如硝化和反硝化细菌)的生长。封闭式泡沫的核心在保持阿科蔓浮力的同时,给了它们水草一样的外观。完整的固定底座使阿科蔓能够被放置在水体中适当的位置。


2、 去除污染物的原理
控制悬浮性藻类的原理:阿科蔓的*表面吸附性将更多的营养物转移到阿科蔓表面,从而使浮游藻类在生存竞争中处于不利地位,导致其不能正常生长、繁殖甚至消亡。
去除有机物的原理:大量的微生物附着在阿科蔓表面,对有机营养物进行吸附、生物氧化,终将有机物分解,或转化成为微生物组分,从而去除水体中的BOD。
去除氮的原理:阿科蔓表层的微A/O环境及微孔结构,为硝化、反硝化细菌以及藻类生长创造适宜的条件。终通过藻类的代谢合成和各种菌类的氨化、硝化、反硝化作用去除水中的总氮。
去除磷的原理:在阿科曼水生态系统中,水体中的磷可通过微生物和水生植物吸收,以及微生物的矿化作用去除。
去除悬浮物的原理:阿科曼水草型的设计能够营造平缓的水力环境,加速悬浮物沉淀;其次悬浮物在与阿科蔓的碰撞促使其充分沉降;后,阿科蔓表面的生物絮凝作用,使悬浮物被吸附终随生物膜脱落降至水底。常规生物脱氮除磷工艺流程存在着影响该工艺有效运行的相互影响和制约的因素,主要表现为:
①厌氧与缺氧段污泥量的分配比影响磷释放或硝态氮反硝化的效果,厌氧段污泥量比例大则磷释放效果好,但反硝化效果差;反之,则反硝化效果好,而磷释放效果差;
②原污水经厌氧段进入缺氧段,磷释放与硝态氮反硝化争夺碳源,当原水中碳源不足时,磷释放或反硝化不*;
③硝化菌世代繁殖时间长,要求较长的污泥龄,但磷从系统中被去除主要是通过剩余污泥的排放,因此要提高除磷效率则要求短污泥龄。
对于某些含高浓度氨氮的工业废水,由于碳源不足,总氮的去除率较低,所以根据常规脱氮除磷方法,在工艺技术上存在诸多问题。相对而言,微波化学污水脱磷除氮技术投资少、运行操作简单、无二次污染而被广泛应用。


化学污水处理工艺去除氨氮的技术原理微波对流体中物质进行选择性加热,它通过微波场对吸波物质的选择性加热、低温催化、快速穿透等功能,达到去污除浊杀菌的效果。微波化学污水处理技术的基础是“极性分子理论”。根据此“极性分子理论”,微波不仅可以加快化学反应,在一定条件下也能抑制反应的进行。除此之外,微波还可以改变反应的途径。微波对化学反应的作用除了对反应加热引起反应速率改变以外,还具有电磁场对反应分子间行为的直接作用而引起的所谓“非热效应”。微波对反应的作用程度除了与反应类型有关外,还与微波的强度、频率、调制方式及环境条件有关。此外,由于化学反应是一个非平衡系统,旧的物质在不断消耗,新的物质在不断生成,各相界面可能发生随机的变化;与此同时系统的宏观电磁特性也在发生变化,而且在微波辐射下这种变化还与所用的微波紧密相关。

曝气池在活性污泥法中的地位
曝气池为活性污泥法的反应主体,污水在流经曝气池时,一部分污染物被活性污泥上的微生物生长代谢利用,一部分难降解的污染物会随污水流到下一个构筑物,若曝气池出现了异常情况,则流到下一个构筑物的污染物就可能超标,当后面构筑物的进水负荷增大到系统不能承受的范围时,整个水处理系统便会崩溃,从而引起出水超标,因此,曝气池的正常工作是活性污泥法正常运行的关键,同时,曝气池的正常运转关系着整个水处理系统的处理效率,所以,曝气池在活性污泥法乃至整个水处理系统中是至关重要的,及时有效地应对曝气池出现的异常问题在污水运营中显得至关重要。

常见的污泥发黑原因及应对措施
引起污泥发黑的原因很多,比如由于曝气池中缺少溶解氧而引起的污泥发黑、进水中含有较多的色素物质等。曝气池污泥发黑很多时候是污泥缺少溶解氧造成的,因此,一旦发生污泥发黑的情形,首先应是检查曝气池的溶解氧含量,再检查进水水质,根据水质检查的结果,具体地判断是由什么原因造成的。常见的污泥发黑的原因及应对措施如下:
1)由溶解氧过低引起的曝气池污泥发黑;相应的解决办法为:增加曝气池的供氧量,使溶解氧的质量浓度大于2mg/L短时间内可以达到4~5mg/L只要提高曝气池混合液的溶解氧含量,几个小时的时间,污泥将逐渐恢复正常。
2)由进水水质引起的曝气池污泥发黑。例如,当进水中含有大量Fe2+时,同时,当曝气池溶解氧不足时,有机物厌氧分解释会放出H2S,H2S与Fe2+作用生成FeS,而FeS的颜色为黑褐色,因而会使整个曝气池污泥变黑。
相应的解决办法为:通过水质检测确定引起污泥发黑的原因,然后对症下药;同时,可以通过增大曝气量以及加大回流比来改善曝气池污泥发黑的状况。
3)当进水中含有对微生物有毒害作用的物质,会使微生物死亡,也会造成曝气池污泥发黑;相应的解决办法为:首先检查进水水质,如果进水当中含有对微生物作用的有毒物质,必须从前端控制好,其次,可以通过增大曝气量以及加大回流来提高曝气池的抗负荷能力,进而改善污泥发黑的状况,对于已经有大量含毒性的废液进入到系统中的情况而造成系统崩溃的情况,应对系统的污泥进行更换。

4)污泥在曝气池中停留时间过长也会因为污泥老化而发生曝气池污泥发黑的情况。相应的解决办法为:适当降低曝气量,同时,注意污泥在曝气池中的停留时间,及时排泥。此外,进水负荷突然增大,也会造成曝气池污泥发黑的,这种情况的应对措施比较容易,只要减小进水量就可以明显地改善曝气池污泥发黑状况。
总之,造成曝气池污泥发黑的原因很多,相应的应对措施也不相同,但是,通常情况下,出现污泥发黑的对应措施为:先检查进水水质,若水质没有问题,再考察工艺参数是否设置得当;若进水水质有问题,应同时调整进水及工艺参数。
二沉池的污泥一部分会被当做剩余污泥排放到污泥浓缩池去,一部分污泥会回流到曝气池,于是猜测污水站的二级曝气池污泥发黑的原因是回流了二沉池腐化的污泥。为验证此观点,采取了以下措施:
1)关闭二沉池到二级曝气池的回流管道上的阀门,开启二沉池到污泥浓缩池的泵,直到浮子流量计里看不到明显的污泥层,目的是排清二沉池里的腐化污泥;
2)在二级曝气池中投加面粉,同时,加大曝气的强度,使曝气池的溶解氧含量较平时稍大,采用的是与系统启动时所用的闷曝相类似做法;
3)系统上水量维持平时的上水量,目的是不改变进水负荷。经过1周时间的调试,污水站的二级曝气池污泥又恢复了正常,颜色变得与一级曝气池污泥的颜色*,污泥发黑的状况消除,且经过几个月的运行,没有再发生污泥发黑的情况。

ADMONT 工艺
ADMONT工艺是由奥地利能源及环境SGP公司和维也纳技术大学针对ADMONT /HALL污水处理厂AB工艺改造, 而发明的一种新型脱氮除磷工艺。
该工艺与AB工艺的明显不同之处在于增设了两个循环。为不破坏原有系统中的生物体中主种群, 这两个循环的污泥量较小, 一般约为进水量3% 。该工艺通过图2中的循环Ñ 将中沉池和二沉池污泥混合, 从而向B段提供反硝化菌和碳源; 通过循环向A段提供硝化菌。通过这两个循环改变原有工艺中A段和B段生物相特征, 使得A、B段均同时存在硝化菌和反硝化菌, 已达到脱氮除磷功能。从有关研究及实际运行结果来看, ADMONT工艺综合了AB工艺及脱氮除磷工艺的优点, 而且能更有效利用碳源, 缓解生物脱氮除磷过程中碳源不足的问题, 不仅投资省, 而且实现了脱氮除磷的一体化, 提高出水水质。MSBR是20 世 纪 80年代初,美国Yang等结合传统连续活性污泥处理和SBR技术,研究开发出一种污水生物处理工艺。该工艺经过不断改进和发展,现已成为第3代MSBR技术,其工艺与配套设备的技术属于美国Aqua AerobicIn公司所有。
MSBR实质上由前端A2/O与后端SBR串联而成的单池多格一体化工艺,巧妙地将连续流的空间控制(A2/O)与间歇式的时间控制(SBR)有效地结合于一体,混合流与推流相结合,系统前端采用空间控制来保证系统的高反应速率,后端采用时间控制以有效地保证出水质量,是一种集约化程度较高的一体化SBR变型工艺。

MSBR系统通常由7个单元组成,分别为厌氧池、缺氧池、好氧池、2个序批池、泥水分离池和污泥缺氧池,污水先进人厌氧池后,经缺氧进人主曝气池,好氧处理后的污水由内循环回流泵分别泵人左右二两侧的序批分池中,两池的功能相同,周期处于好氧一缺氧一厌氧的循环,剩余污泥分别经泥水分离池和前端缺氧池,由污泥泵排出反应器,回流污泥则进人厌氧池,经泥水分离池澄清后的尾水则排出反应池。MSBR从连续运行单元进水,而不是从SBR单元进水,提高了反应器利用率,同时有效地抵抗冲击负荷;活性污泥微生物置于交替厌氧、缺氧、好氧的环境中,同时完成脱氮除磷和有机物降解的目的;采用空气堰控制出水,有效地控制出水悬浮物,从而达到高效稳定地运行。

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
联系方式
  • 电话

  • 传真

在线客服