日处理30吨地埋式一体化生活污水处理设备MSBR系统通常由7个单元组成,分别为厌氧池、缺氧池、好氧池、2个序批池、泥水分离池和污泥缺氧池,污水*人厌氧池后,经缺氧进人主曝气池,好氧处理后的污水由内循环回流泵分别泵人左右二两侧的序批分池中,两池的功能相同,周期处于好氧一缺氧一厌氧的循环,剩余污泥分别经泥水分离池和前端缺氧池,由污泥泵排出反应器,回流污泥则进人厌氧池,经泥水分离池澄清后的尾水则排出反
产品时间:2024-09-09
日处理30吨地埋式一体化生活污水处理设备
我公司专业生产日处理30吨地埋式一体化生活污水处理设备。
*。
工艺采用AO及MBR*工艺。
可用于处理生活污水、医疗污水等多种水质。
排放可达到一级、二级排放标准。
设备可放地上、地下。
分散式污水处理装置是原位处理生活污水的重要途径之一,它既能减小长距离输水的成本,还能降低相应的维修费用。分散型污水处理装置的设计理念是占地紧凑、不产生异味、便于使用和管理。
厌氧消化工艺是用于分散式污水处理装置的典型工艺,它具有占地小、低能耗、低污泥产量、产生沼气等特点。在不同的操作工况之下,有机物去除率可达25%~90%之间。氮是生活污水的重要成分之一,在厌氧消化工艺之后必须设置对应的脱氮环节以降解污水中的氮,厌氧氨氧化工艺是脱氮领域的新技术,在针对污泥消化液脱氮处理中已有工程应用。活性污泥技术:活性污泥技术是一种生物法,向废水中通入空气,使好氧 性微生物繁殖培养形成具很强吸附能力的活性污泥,生物法逐渐成为污水处理技术的主流方法。这一方法自 1914年由 E.Arden 和 W.T.Lokett在英国曼彻斯特开创。
活性污泥技术的基本流程:由曝气池、二次沉淀池、曝气系统以及污泥回流系统组成。由初次沉淀池流出的废水与从二次沉淀池底部回流的活性污泥同时进入曝气池,成为混合液。在曝气池的作用下,混合液充分曝气,并使活性污泥和废水充分接触。废水中的可溶性有机污染物被活性污泥所吸附,并被微生物群体所分解,使废水得到净化。
活性污泥技术具体还包括很多种,其中有普通式活性污泥法、氧化沟法、AB两段式活性污泥法、序批式活性污泥(SBR)法、*混合性污泥法等。
A/O工艺法:也叫厌氧好氧工艺法。除了可去除废水中的有机污染物外,还可同时去除氮、磷,对于高浓度有机废水及难降解废水,在好氧段前设置水解酸化段,可显著提高废水可生化性。
A2/O法:生物脱氮除磷工艺是传统活性污泥工艺、生物硝化及反硝化工艺和生物除磷工艺的综合。该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。
化粪池技术:生活污水的收集和预处理,建议保留化粪池或村民门口附近的坑塘。化粪池不仅可以起到收集污水的作用,同时还可以通过微生物新陈代谢作用除去部分有机质。
工艺流程为分离池-腐化池-酸化池-氧化池-排放。该工艺无动力、低能耗、占地面积小、出水水质好。但是化粪池存在清掏困难、产生恶臭气体和堵塞管道等缺点。
人工快渗:在快速渗滤系统运行中,污水周期地向渗滤田灌水和休灌,在土壤层形成的厌氧、好氧交替运行状态有利于氮、磷的去除。COD和氨氮平均去除率分别为79.65%和94.47%,出水达到GB 18918—2002 一级A排放标准。
生态塘:是从氧化塘发展而来的污水生态化处理技术,主要进行污水的二级深度处理。它是利用水体自然净化能力处理污水的天然或人工池塘,在太阳能作为初始能源的推动下,借助菌藻共生强化系统去除有机物,以水生植物和水产、水禽的形式作为资源回收,净化的污水也可作为再生水资源予以回收利用,实现污水处理资源化,是生态处理的发展方向。李旭东等采用高效藻类塘系统处理太湖地区农村生活污水,COD的平均去除率在70%以上,氨氮的平均去除率高达93%,磷的平均去除率为55%。
稳定塘:在缺水干旱地区,稳定塘工艺是实施污水资源化利用的有效方法。与传统的二级生物处理技术相比,高效藻类塘具有很多*的性质,对于土地资源相对丰富,但技术水平相对落后的农村地区来说,是一种较具推广价值的污水处理技术。有实验研究显示,采用高效藻类塘系统处理太湖地区农村生活污水,CODcr的平均去除率70%以上,氨氮的平均去除率高达93%,磷的平均去除率为55%。该项技术已经成为近年来我国着力推广的一项技术。
1、 结构形式
阿科曼生态基的结构形式有两种:SDF(表面安置型)和BDF(底部放置型)。
SDF(表面安置型)型生态基上部结构较为疏松,下部较为密实,上部的超级编织层——疏松的纤维编织结构可以程度地实现颗粒物的沉降和利于藻类生长繁殖、促进物种多样化。下部的超级编织层———密实的纤维编织结构可以由外及里形成理想的“好氧-兼性-厌氧”环境,实现高效的脱氮除磷、降解有机物,生物膜能自然脱落。
BDF(底部放置型)型生态基一面编织较密实,另一面编织较疏松。疏松设计有利于藻类的生长,密实的设计有利于细菌(如硝化和反硝化细菌)的生长。封闭式泡沫的核心在保持阿科蔓浮力的同时,给了它们水草一样的外观。完整的固定底座使阿科蔓能够被放置在水体中适当的位置。
2、 去除污染物的原理
控制悬浮性藻类的原理:阿科蔓的*表面吸附性将更多的营养物转移到阿科蔓表面,从而使浮游藻类在生存竞争中处于不利地位,导致其不能正常生长、繁殖甚至消亡。
去除有机物的原理:大量的微生物附着在阿科蔓表面,对有机营养物进行吸附、生物氧化,终将有机物分解,或转化成为微生物组分,从而去除水体中的BOD。
去除氮的原理:阿科蔓表层的微A/O环境及微孔结构,为硝化、反硝化细菌以及藻类生长创造适宜的条件。终通过藻类的代谢合成和各种菌类的氨化、硝化、反硝化作用去除水中的总氮。
去除磷的原理:在阿科曼水生态系统中,水体中的磷可通过微生物和水生植物吸收,以及微生物的矿化作用去除。
去除悬浮物的原理:阿科曼水草型的设计能够营造平缓的水力环境,加速悬浮物沉淀;其次悬浮物在与阿科蔓的碰撞促使其充分沉降;后,阿科蔓表面的生物絮凝作用,使悬浮物被吸附终随生物膜脱落降至水底。常规生物脱氮除磷工艺流程存在着影响该工艺有效运行的相互影响和制约的因素,主要表现为:
①厌氧与缺氧段污泥量的分配比影响磷释放或硝态氮反硝化的效果,厌氧段污泥量比例大则磷释放效果好,但反硝化效果差;反之,则反硝化效果好,而磷释放效果差;
②原污水经厌氧段进入缺氧段,磷释放与硝态氮反硝化争夺碳源,当原水中碳源不足时,磷释放或反硝化不*;
③硝化菌世代繁殖时间长,要求较长的污泥龄,但磷从系统中被去除主要是通过剩余污泥的排放,因此要提高除磷效率则要求短污泥龄。
对于某些含高浓度氨氮的工业废水,由于碳源不足,总氮的去除率较低,所以根据常规脱氮除磷方法,在工艺技术上存在诸多问题。相对而言,微波化学污水脱磷除氮技术投资少、运行操作简单、无二次污染而被广泛应用。
化学污水处理工艺去除氨氮的技术原理微波对流体中物质进行选择性加热,它通过微波场对吸波物质的选择性加热、低温催化、快速穿透等功能,达到去污除浊杀菌的效果。微波化学污水处理技术的基础是“极性分子理论”。根据此“极性分子理论”,微波不仅可以加快化学反应,在一定条件下也能抑制反应的进行。除此之外,微波还可以改变反应的途径。微波对化学反应的作用除了对反应加热引起反应速率改变以外,还具有电磁场对反应分子间行为的直接作用而引起的所谓“非热效应”。微波对反应的作用程度除了与反应类型有关外,还与微波的强度、频率、调制方式及环境条件有关。此外,由于化学反应是一个非平衡系统,旧的物质在不断消耗,新的物质在不断生成,各相界面可能发生随机的变化;与此同时系统的宏观电磁特性也在发生变化,而且在微波辐射下这种变化还与所用的微波紧密相关。
曝气池在活性污泥法中的地位
曝气池为活性污泥法的反应主体,污水在流经曝气池时,一部分污染物被活性污泥上的微生物生长代谢利用,一部分难降解的污染物会随污水流到下一个构筑物,若曝气池出现了异常情况,则流到下一个构筑物的污染物就可能超标,当后面构筑物的进水负荷增大到系统不能承受的范围时,整个水处理系统便会崩溃,从而引起出水超标,因此,曝气池的正常工作是活性污泥法正常运行的关键,同时,曝气池的正常运转关系着整个水处理系统的处理效率,所以,曝气池在活性污泥法乃至整个水处理系统中是至关重要的,及时有效地应对曝气池出现的异常问题在污水运营中显得至关重要。
常见的污泥发黑原因及应对措施
引起污泥发黑的原因很多,比如由于曝气池中缺少溶解氧而引起的污泥发黑、进水中含有较多的色素物质等。曝气池污泥发黑很多时候是污泥缺少溶解氧造成的,因此,一旦发生污泥发黑的情形,首先应是检查曝气池的溶解氧含量,再检查进水水质,根据水质检查的结果,具体地判断是由什么原因造成的。常见的污泥发黑的原因及应对措施如下:
1)由溶解氧过低引起的曝气池污泥发黑;相应的解决办法为:增加曝气池的供氧量,使溶解氧的质量浓度大于2mg/L短时间内可以达到4~5mg/L只要提高曝气池混合液的溶解氧含量,几个小时的时间,污泥将逐渐恢复正常。
2)由进水水质引起的曝气池污泥发黑。例如,当进水中含有大量Fe2+时,同时,当曝气池溶解氧不足时,有机物厌氧分解释会放出H2S,H2S与Fe2+作用生成FeS,而FeS的颜色为黑褐色,因而会使整个曝气池污泥变黑。
4)污泥在曝气池中停留时间过长也会因为污泥老化而发生曝气池污泥发黑的情况。相应的解决办法为:适当降低曝气量,同时,注意污泥在曝气池中的停留时间,及时排泥。此外,进水负荷突然增大,也会造成曝气池污泥发黑的,这种情况的应对措施比较容易,只要减小进水量就可以明显地改善曝气池污泥发黑状况。