产品展示
PRODUCT DISPLAY
技术支持您现在的位置:首页 > 技术支持 > 美丽乡村污水处理设施
美丽乡村污水处理设施
  • 发布日期:2019-09-17      浏览次数:730
    • 美丽乡村污水处理设施

      生物强化技术。
      生物强化技术是通过改善外界环境因素,提高现有工艺对有毒难降解有机物的生物降解效率。目前实施的生物强化技术主要有3个途径。
      投加有效降解的微生物:主要是针对所要去除的污染物质,投加专门培养的优势菌种对其进行有效降解。该法已在美国、德国、日本等国采用,主要用于改善活性污泥法处理效果,但优势菌种在新环境中的适应性和再生问题待解决。
      为了增加优势菌种在生物处理装置内的浓度,提高难降解有机物的处理效率,固定化技术已被用来处理部分难降解有机物。固定化技术是通过化学或物理的手段将优势的游离菌固定,使其不再游离,但仍具有生物活性的技术。
      投加营养物和基质类似物:由于大部分有毒有机物的降解是通过共代谢途径进行的,在常规活性污泥系统中可降解目标污染物的微生物数量与活性比较低,添加某些营养物包括碳源与能源性物质,或提供目标污染物降解过程所需的因子,将有助于降解菌的生长,改善处理系统的运行性能。投加基质类似物是针对代谢酶的可诱导性而提出,利用目标污染物的降解产物、前体作为酶的诱导物,提高酶活性。


      投加遗传工程菌酶:通过基因工程技术构建具有特殊降解功能的菌,形成了酶生物处理技术。酶的固定化技术是目前这一领域研究的热点。
      优化组合的处理工艺。
      提高难降解物质的去除率,必须延长水力停留时间和增加泥龄,提高微生物有效浓度,增加污染物与微生物的接触时间。
      添加粉末活性炭活性污泥工艺:采用这一工艺,使有机物除被微生物氧化处理外,还被活性炭所吸附。由于活性炭表面的污泥泥龄较长,污染物与微生物接触时间远大于水力停留时间,从而使难降解毒性有机物去除率提高。
      厌氧-好氧工艺的组合:有时采用单独的好氧或厌氧工艺处理效果都不理想,但采用联合处理工艺后,可能会发挥各工艺的优点,产生协同效应,使处理效果大大提高。
      物化法
      物化法处理难降解有机污染物的文献报道不多见,主要有吸附法、萃取法、各种膜处理技术等。
      吸附法主要采用交换吸附、物理吸附或化学吸附等方式,将污染物从废水吸附到吸附剂上,达到去除的目的。吸附效果受到吸附剂结构、性质和污染物的结构和性质以及操作工艺等因素的影响,常用的吸附剂有活性炭、树脂、活性炭纤维、硅藻土等。该法的优点是设备投资少、处理效果好、占地面积小。但由于吸附剂的吸附容量有限,吸附后的再生往往能耗很大,废弃后排放易造成二次污染,这些因素限制了该方法的实际应用。
      萃取法是利用与水互不相溶、但对污染物的溶解能力较强的溶剂,将其与废水充分混合接触,大部分的污染物便转移至溶剂相,分离废水和溶剂,使废水得到净化。分离溶剂与污染物,溶剂可以循环利用,废物中有用物质的回收,还可变废为宝。但是目前萃取法仅适用于少数几种有机废水,萃取效果及费用主要取决于所使用的萃取剂。由于萃取剂在水中还有一定的溶解度,处理时难免有少量溶剂流失,使处理后的水质难以达到排放标准,还需结合其他方法做进一步的处理。
      随着材料技术的进步,超滤法和反渗透法等膜技术也已用于废水的治理研究,不但可以治理废水,还可从废水中回收有用物质。


      化学氧化法
      化学氧化技术常用于生物处理的前处理,一般是在催化剂的作用下,用化学氧化剂处理有机废水以提高废水可生化性,或直接氧化降解废水中有机物使之稳定化。常用的氧化剂有O3,H2O2,KMnO4等。现代工业的发展使含有高浓度难生化降解有机物的工业废水日益增多,对于这类废水的处理,常用氧化剂表现出氧化能力不强,存在选择性氧化等缺点,难以达到实际的要求。
      随着研究的深入,化学氧化技术应运而生,在使用中已获得显著效果。氧化技术的基础在于运用光辐照、电、声、催化剂,有时还与氧化剂结合,在反应中产生活性*的.OH自由基,再通过自由基与有机化合物之间的加合、取代、电子转移、断键等,使水体中的大分子,难降解有机物氧化降解成低毒或无毒的小分子物质,甚至直接降解成CO2和H2O,接近*矿化。

      美丽乡村污水处理设施这种以.OH为主要氧化剂的降解技术克服了普通氧化法存在的问题,具有以下特点:产生的.OH氧化能力*,与各种有机物质的反应速率相近,具有“广谱性”,能有效地将废水中的有机物*降解为CO2,H2O和无机盐,无二次污染,工艺灵活,既可单独处理,又可以与其他处理工艺组合。作为一种物理化学处理过程,极易控制以满足不同处理需要。由于氧化过程可以*破坏毒性污染物,较之其他处理方法有特殊的优越性,因而,在水处理研究领域引起广泛的关注。

      生物法脱氮
         污水生物脱氮过程中,污水中各种形态的氮一部分通过氨化、硝化、反硝化作用转化为氮气,以气体形式从水中脱除;另一部分则在上述作用中转化为细菌细胞,再以污泥形式从水中分离出去。
      脱氮新技术简述
         ANAMMOX工艺、SHARON工艺、SHD工艺、OLAND工艺。
      除磷技术
         污水中的磷主要来自粪便、洗涤剂、农药和含磷工业废水等,磷在污水中以正磷酸盐(简称正磷)、聚合磷酸盐(聚合磷)及有机磷酸盐(有机磷)的形式存在。其中,正磷和聚合磷是溶解性的,有机磷大部分是不溶于水的颗粒物。经过生物处理后,有机磷逐级降解为正磷,聚合磷水解为正磷。所以,在传统的污水生物处理过程中,除了同化作用转化为细胞组成部分的少量磷以外,原污水中的大部分磷都以溶解性的正磷酸盐形式残留在污水中。
         溶解性正磷酸盐可以用化学沉淀法使其转化为不溶的固体沉淀物,再从污水中分离出去;或利用生物处理,使其转化为富含磷的生物细胞,然后与污水分离。

      化学法除磷
         许多金属的正磷酸盐都有很低的溶度积,所以可以采用向污水投入金属盐类的方法,形成这些金属的正磷酸盐沉淀物,再通过固液分离达到将磷从污水中取出的目的。由于这些沉淀物的溶度积很低,所以用化学沉淀法可以将污水中磷降低到极低的程度,能够满足《城镇污水处理厂污染物排放标准》。
      生物法除磷
         生物法脱磷是在好氧条件下PAO对污水中溶解性磷酸盐过量吸收,然后进行沉淀分离。在厌氧和好氧交替的生物处理系统中除磷。
      同步脱氮除磷技术
         在一个处理系统中同时去除氮、磷和含碳有机物的工艺称为同步脱氮除磷技术。
         这些工艺的共同点及时都有厌氧、缺氧、好氧池。厌氧池释放磷,缺氧池反硝化菌将回流液中的硝酸氮转化为氮气从污水中脱出;好氧池主要是含碳有机物的降解、含氮有机物的氨化和硝化、聚磷菌的过量吸磷。
      原理:微生物在酶的催化作用下,利用微生物的新陈代谢功能,对污水中的污染物质进行分解和转化。
      发酵:微生物将有机物氧化释放的电子直接交给底物本身未*氧化某种中间产物,同时释放能量并产生不同的代谢产物。
      呼吸:微生物在降解底物的过程中,将释放的电子交给辅酶Ⅱ、FAD或FMN等电子载体再经电子传递系统传给外源电子受体,从而生成水或其他还原型产物并释放能量的过程。
      1、好氧呼吸:
      有机物终被分解为CO2,氨和水等无机物,并释放出能量。

      2、缺氧呼吸。
      好氧生物处理:污水中有分子氧存在的情况下,利用好氧微生物(包括兼性微生物、主要是好氧微生物)降解有机物,使其稳定、无害化的处理方法。主要有活性污泥法和生物膜法两种。通过代谢活动约有1/3被分解、稳定,并提供生理所需能量,2/3被转化合成新的细胞物质即污水生物处理中的活性污泥或生物膜的增长部分,通常称为剩余活性污泥或生物膜,又称为生物污泥。优点:反应速率较快,所需反应时间较短,处理构筑物容积较小且处理过程中散发的臭气较少。
      厌氧生物处理:在没有分子氧和化合态氧的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。有机物转化分为三个部分:1、甲烷,2、二氧化碳、水、氨、硫化氢等无机物,3、合成新的细胞质。厌氧段污泥增长率较少。优点:运行费用低,剩余污泥量少,可回收能量(甲烷)。缺点:反应速率较慢,时间长,处理构筑物容积大。有机污泥和高浓度有机废水(一般BOD5大于2000mg/l)均可采用厌氧生物处理法。

    联系方式
    • 电话

    • 传真

    在线客服