产品展示
PRODUCT DISPLAY
技术支持您现在的位置:首页 > 技术支持 > 地埋式一体化医院废水处理系统
地埋式一体化医院废水处理系统
  • 发布日期:2019-10-06      浏览次数:718
    • 地埋式一体化医院废水处理系统

      污水处理设备全国通用,欢迎咨询潍坊鲁盛水处理设备有限公司。

      通用产品:地埋式一体化污水处理设备、气浮机、二氧化氯发生器、加药装置、玻璃钢一体化设备、叠螺污泥脱水机。

      现货、专车送货,小型设备只需20000元就可买到。

      日处理水量1-1000吨不等,设备可定制。

          固定化生物活性炭(IBAC)是以活性炭为载体,人为采用吸附载体法将在工程菌吸附在活性炭表面形成生物膜。它有很多优点:
      (1)IBC为主的处理单元对砂滤出水中的浊度、高锰酸盐指数、LAS和浴臭均有很好的去除作用,处理后这些指标可达到规范的要求;
      (2)通过GC/MS检测证实,IBAC可以有效的去除洗浴水中的有机物,其中IBAC进水中含有5种可疑环境类分泌干扰酯类化合物(PAEs),经过IBAC处理之后,有3种被*去除,2种被部分去除;
      (3)IBAC经过反冲洗后,仍具有良好的净化效果,IBAC的处理作用是以微生物的降解作用为主,同时发挥着活性炭的物理吸附作用以及两者的吸附净化效能;
      (4)从生态位理论IBAC上工程菌能够在活性炭上以优势菌群长期存在原因是驯化的工程菌生态位得以泛化。  
      1、曝气过度很不利于污泥培养的。微生物的量和源水中的碳氢含量有关,碳氢不足和难提高微生物数量,特意提高微生物数量将会使污泥老化,反而不利于出水水质。根据F/M值的大小,可以知道微生物数量是否太低,该值不大与0.25,说明微生物数量不会太低。
      总结:一般的活性污泥工艺可以这样来大致评判,但对高负荷活性污泥工艺不适合,因为此类工艺的污染物很大程度上是被污泥吸附并随剩余污泥排放而去除的,即M中也含有大量F,所以在这种情况下F/M比和泥龄对运行控制没有多大的意义。


      2、出水水温不低于10度,微生物活性是没有太大问题的。污泥龄的准确计算公式:(曝气池的有效容积*污泥浓度)/(排泥量*回流污泥浓度*24),污泥龄是污泥在曝气池中的停留时间,是控制污泥是否老化的重要参数,此参数控制不好很难保证生物系统的正常运转。一般超过30天,污泥就有可能老化了。污泥龄偏低,由此生物活性增强,不利于在二沉池的泥水分离。
      总结:泥龄短的高负荷污泥一般沉降速率较快,其中高负荷污泥的沉降性能又比老化污泥好,污泥龄偏低的污泥其沉降速率介于以上二者之间。
      3、SV30大于50%,可能是丝状菌膨胀问题,小于25%,上清液浑浊,夹有细小颗粒,有大量非活性类鞭毛虫(如侧跳虫、滴虫),则可能是污泥龄偏低的原因。
      总结:SV30没有排除污泥浓度的因素,污泥是否膨胀可用SVI值作参考,污泥膨胀不一定是丝状菌过多引起的。
      4、若生物系统是低负荷运行(F/M小于0.15),溶解氧控制在1.5ppm就足够了,这样可节电。
      总结:溶解氧的控制除了生化所需外,还要考虑污泥在沉淀池因缺氧而发生反硝化及尽可能保持回流污泥活性等因素,生物膜工艺的溶解氧还应该高些。
      5、控制低的溶解氧出水,可使微生物在沉降阶段,十分有利于微生物重新进入生物池首端后发生更好的吸附氧化作用。
      总结:曝气池溶解氧适当高些,可防止污泥在沉淀池发生反硝化,也有利于活性污泥重新进入生物池首端后发生更好的吸附氧化作用,所以曝气池出水端的溶解氧不能太低。
      6、水解酸化段可以将大分子物质转化为小分子物质,有利于后段有机物的降解。也就是说水解段的污染物质不易被微生物所降解。
      总结:与其说水解段的污染物质不易被微生物所降解,不如说是不*的生化反应。
      7、SS明显变大,原因很多,若短时间的变化,可能与负荷过大有关,长期的,周期性的变化,则可能与丝状菌膨胀和污泥老化有关。进水浓度增高,会导致活性污泥活性增强,不利于沉降。出水浑浊而带有跑泥的现象。过于低负荷运行,污泥老化后,微生物自身氧化,解絮。同样会产生跑泥SS高。另外,气温过底、曝气过度、PH变化过大、有毒物质进如生物系统等等,也会产生跑泥。
      总结:进水浓度增高,会使污泥活性增强,但不会不利于沉降;污泥过度老化和中毒都会引起跑泥,但在表观上是可以区分的。
      8、处理生活污水N、P一般应该不会缺才对,处理低浓度污水,容易导致污泥老化,出水夹有多量细小的活性污泥颗粒,此部分会导致出水的COD上升,不太严重的活性污泥随水流出,使COD上升幅度在10-20ppm之间。
      总结:有统计表明:每1mg/LESS表现出的BOD在0.54~0.69mg/L之间,平均为0.61mg/LBOD。
      9SV在生物膜法处理中并不是重要的控制参数指标。
      总结:通常生物膜法基本上没有悬浮污泥的,又何言SV呢。
      10、氧化沟各槽的污泥浓度不一样,而且也没有可比性。
      总结:这是对交替式氧化沟而言的,不仅各槽的污泥浓度不一样,同一槽各时间段的污泥浓度也不一样。
      11、印染废水应该是比较难处理的废水,其污染物分解需要很长的生物氧化和接触时间。显色分子对活性污泥来说是有难度的,一般的微生物对显色物质的去除大多数是随泥而排除的。脱色应该在生化处理段前。剩下的不容易去除的部分在通过生物吸附去除。
      总结:没错,但生化对有些染色废水的色度也有一定的作用。
      12、接触氧化法比传统活性污泥要好一点,因为接触氧化法,生物停留时间长,易于难降解的有机物,同时生物膜局部厌氧也有利于去除降解的有机物。


      总结:要使接触氧化工艺处理效率高,生物膜厚度必需控制好(实际上较难控制),如生物膜过厚甚至结球,其处理效果会很差。
      13、回流比是回流污泥量与生化系统进水量的比值,通过控制回流比可以提高微生物的活性、提高处理效率的作用。
      总结:回流比大不一定回流至曝气池的污泥就多,因为回流量太大,其浓度会大幅下降(受制于二沉池的运行状态),也就是说回流污泥量没有浓度概念的。
      14、含硝基苯、苯胺类物质的处理工艺:调节池--气浮--加酸罐--铁碳池--加碱罐--沉淀--水解酸化池--二沉池-出水。硝基苯、苯胺是属于难降解的污染物质,对此类废水的去除,各个过程都要控制得当。不然出水会很会有压力。总结:这是大致的工艺组合,在水解酸化池后还需设置好氧工序。
      15、PAC+阳离子PAM是比较好的絮凝剂组合。二沉池是通常不加絮凝剂的。脱水机房通常是使用阳性的PAM即可。

      生化池运行状态判断
      生化池运行状态可根据以下情况判断:
      ⑴颜色:运行良好时混合液呈棕褐色,且色泽鲜明;运行恶化时呈深褐色或黑色。
      ⑵气味:运行良好时不产生讨厌气味,应为略带霉味的泥土气味;运行恶化时废。
      水有一种类似腐bai的鸡蛋的恶臭味。
      ⑶泡沫:在生化池内出现少量的泡沫,属正常现象;在出水中出现白色泡沫翻滚,表示悬浮固体浓度过高。
      ⑷pH值:运行正常,pH值应在6.5~8.5之间,若下降,可能是曝气过量,有毒物质进入,可加入生石灰(或工业Na2CO3)进行调节。
      当厌氧池调试完成之后,好氧生化池运行正常,整个调试工作基本结束。

      地埋式一体化医院废水处理系统确定工艺控制参数
      设计的工艺控制参数是在预期的水量、水质条件下确定的,而实际投入运行的污水处理厂其水量、水质往往与设计有较大差异。因此,必须根据实际的水量、水质情况来确定适合的工艺控制参数,以保证正常运行,并在确保出水水质达标的前提下,尽可能地降低能耗。
      工艺控制参数
      需确定的重要的工艺控制参数有:进水泵房的控制水位、砂浆沉砂池排砂周期、池氧化还原电位ORP、污泥浓度MLSS、污泥回流比R、污泥沉降比SV、污泥指数SVI、污泥龄SRT、剩余污泥排放周期及日排放量等。其中影响能耗的主要因素是进水水位的高低和污泥浓度MLSS的大小,影响脱氮除磷效果的主要因素是池污泥龄SRT。

      确定方法
      1)进水泵房水位在保证进水系统不溢流的前提下尽量控制在高水位运行;
      2)依据砂水分离器处理能力与砂浆沉淀池体积的对比来确定排砂周期;
      3)生化池ORP主要根据厌氧池放磷情况、好氧池吸磷和硝化的情况来确定。一般情况下,厌氧池的DO小于0.2mg/L,好氧池的DO约为2.0mg/L;厌氧池的ORP小于-250mV,好氧池的ORP大于40mV;
      4)通过对厌氧池、好氧池进行监测,当明显存在磷的释放和吸收时,厌氧池的硝酸盐在0.5mg/L以下;
      5)出水氨氮下降时,TP值上升,脱氮与除磷之间存在矛盾,运行中应兼顾两个指标,即努力控制降低回流污泥中NO3--N对生物除磷的影响;
      6)要想得到良好的除磷效果,污泥龄应低于12d(比设计值低),否则除磷效果不稳定;
      7)污泥浓度MLSS根据污泥负荷来确定,设计污泥负荷为0.08kgBOD5/kgMLSS˙d,因此污泥浓度MLSS应维持在3.0g/L左右;
      8)若BOD5较低时,应以除磷为主,调节剩余污泥排放量来调整污泥龄,使污泥龄在5~12d之间;
      9)污泥沉降比SV能直接反映活性污泥的情况,好氧段污泥一般控制在15%~30%,回流污泥一般控制在20%~40%;
      10)剩余污泥排放周期及日排放量、泥面高度依据污泥龄SRT确定。
      11)根据进水量的大小,调整构筑物的运行状况(单池或双池),以保证*的除磷效果。
      MBR,集生物反应器的生物降解和膜的分离于一体,是膜技术和污水生物处理技术有机结合产生的新型污水生物处理工艺。在水处理多个领域中的应用受到广泛关注,被誉为范围内有发展前途的水处理新技术之一,相信未来MBR工艺在地埋式污水处理厂发展中将具有广阔的前景。
      目前,我国城市污水处理主导目标已经开始由传统的“污水处理、达标排放”转变为以水质再生处理为核心的“水的循环再用”,由单纯的“污染控制”上升为“水生态的修复和恢复”。这就要求采用当代高新技术,逐步将污水“化废为宝”,使处理后的污水达到各种用水途径的再生水水质要求,因此MBR技术倍受青睐。
      什么是MBR?
      MBR污水处理,是现代污水处理的一种常用方式,其采用膜生物反应器(Membrane Bioreactor,简称MBR〕技术是生物处理技术与膜分离技术相结合的一种新技术。它是将污水一步到位地处理成高品质再生水的新型技术,具有环保、开源和发展循环经济的综合效益,是促进实施节能减排,发展循环经济,实现更高技术路线的*选择。
      随着MBR技术投资与运营费用的不断降低,以及更为严格的水资源保护和污染治理政策与标准的深化实施,MBR技术的优势将会越来越充分地得以实现。同时,近年来,国内膜材料、膜组器设备的开发生产也取得了新的较大进展。以前国内90%以上的项目使用的是国外膜材料国产膜材料主要应用于规模较小的项目。

    联系方式
    • 电话

    • 传真

    在线客服